Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865376

RESUMO

The serine/threonine kinase PINK1 is responsible for phosphorylating a ubiquitin (Ub)-like domain in an E3 Ub ligase Parkin protein and a Parkin-bound Ub. PINK1 works as a mitochondrial quality control by phosphorylating and activating the E3 ubiquitin ligase Parkin. Recent medicinal study has reported that mutations of Parkin and PINK1 cause defects in mitophagy and induce early-onset Parkinson's disease (EOPD). In this study, we conducted molecular dynamics simulations to investigate the structural discrepancy caused by a clinical G409V mutation in PINK1 kinase domain's A-loop. The Ub phosphorylation begins with PINK1 D362 deprotonating the hydroxyl group of the substrate Ub's S65' and PINK1's A-loop is responsible for coordinating S65'. On contrary to G409 offering structural plasticity, the replaced, bulky V409 interferes with the alignment of D362-S65', seriously hampering Ub phosphorylation, leading to the accumulation of damaged mitochondria, and ultimately EOPD. In this study, we predicted the hPINK1WT-UbWT binding mode and detected the structural impact brought by G409V replacement. It is expected the concluded remarks to be beneficial for developing cures to alleviate structural interference and restore PINK1 function.


Assuntos
Doença de Parkinson , Humanos , Ubiquitinação , Doença de Parkinson/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Células HeLa , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Ubiquitina/genética
2.
Biomed Pharmacother ; 170: 116073, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159374

RESUMO

Atopic dermatitis (AD) is one of the most common skin autoimmune diseases needing continuous anti-inflammatory management. Pterostilbene is reported to exhibit anti-inflammatory activity with higher bioavailability and stability than its parent compound, resveratrol. In this study, a series of synthetic pterostilbene analogs were designed by the hybridization of pterostilbene with chalcones or benzoyl chloride. Seventeen analogs derived from pterostilbene were synthesized with differences in the positions of hydroxyl, methoxyl, or fluoro moieties. These compounds were screened by the inhibitory effect on the overexpressed Th2-associated cytokines/chemokines in the activated human keratinocytes (HaCaT). The anti-IL-5 and anti-CCL5 activity of these compounds led to the identification of three effective compounds: 3a ((E)- 4-(3,5-dimethoxystyryl)phenyl benzoate), 3d ((E)- 4-(3,5-dimethoxystyryl)phenyl 2-methoxybenzoate), and 3g ((E)- 4-(3,5-dimethoxystyryl)phenyl 2-fluorobenzoate). These benzoyl pterostilbenes also significantly decreased Th1/Th17-associated proinflammatory mediators in the activated macrophages (differentiated THP-1). The result showed that the conditioned medium of benzoyl pterostilbene-treated macrophages reduced the phosphorylated STAT3 in the keratinocytes, indicating the blockade of crosstalk between resident and immune cells. Compounds 3d and 3g generally showed greater skin absorption than 3a. The flux of 3g across barrier-defective skins mimicking the AD skin was 3-fold higher than that of across intact skin. The dinitrochlorobenzene (DNCB)-induced AD mouse model manifested that topical delivery with 3g improved the pathological signs through inhibiting cytokines/chemokines (IL-5, TNF-α, CCL17, and CCL22) and macrophage recruitment. The epidermal thickness was reduced from 76 to 55 µm after topical 3g delivery. The therapeutic activity of 3g was comparable to that of tacrolimus (TAC) used as a positive control. The benzoyl pterostilbenes attenuated the inflammation via the MAPK and c-Jun signaling. Furthermore, this study provided experimental evidence of benzoyl pterostilbene analogs for therapeutic potential on AD.


Assuntos
Dermatite Atópica , Animais , Camundongos , Humanos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Ativação de Macrófagos , Pele , Queratinócitos , Inflamação/tratamento farmacológico , Inflamação/patologia , Citocinas , Quimiocinas , Anti-Inflamatórios/efeitos adversos , Camundongos Endogâmicos BALB C
3.
Cancer Cell Int ; 23(1): 171, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587444

RESUMO

BACKGROUND: The development of nonapoptotic programmed cell death inducers as anticancer agents has emerged as a cancer therapy field. Ferroptosis, ferrous ion-driven programmed cell death that is induced by redox imbalance and dysfunctional reactive oxygen species (ROS) clearance, is triggered during sorafenib and PD-1/PD-L1 immunotherapy. DFIQ, a quinoline derivative, promotes apoptosis by disrupting autophagic flux and promoting ROS accumulation. Our pilot experiments suggest that DFIQ participates in ferroptosis sensitization. Thus, in this study, we aimed to reveal the mechanisms of DFIQ in ferroptosis sensitization and evaluate the clinical potential of DFIQ. METHODS: We treated the non-small cell lung cancer (NSCLC) cell lines H1299, A549, and H460 with the ferroptosis inducer (FI) DFIQ and analyzed viability, protein expression, ROS generation, and fluorescence staining at different time points. Colocalization analysis was performed with ImageJ. RESULTS: DFIQ sensitized cells to FIs such as erastin and RSL3, resulting in a decrease in IC50 of at least 0.5-fold. Measurement of ROS accumulation to explore the underlying mechanism indicated that DFIQ and FIs treatment promoted ROS accumulation and SOD1/SOD2 switching. Mitochondria, known ROS sources, produced high ROS levels during DFIQ/FI treatment. RSL3 treatment promoted mitochondrial damage and mitophagy, an autophagy-associated mitochondrial recycling system, and cotreatment with DFIQ induced accumulation of mitochondrial proteins, which indicated disruption of mitophagic flux. Thus, autophagic flux was measured in cells cotreated with DFIQ. DFIQ treatment was found to disrupt autophagic flux, leading to accumulation of damaged mitochondria and eventually inducing ferroptosis. Furthermore, the influence of DFIQ on the effects of clinical FIs, such as sorafenib, was evaluated, and DFIQ was discovered to sensitize NSCLC cells to sorafenib and promote ferroptosis. CONCLUSIONS: This study indicates that DFIQ not only promotes NSCLC apoptosis but also sensitizes cells to ferroptosis by disrupting autophagic flux, leading to accumulation of dysfunctional mitochondria and thus to ferroptosis. Ferroptosis is a novel therapeutic target in cancer therapy. DFIQ shows the potential to enhance the effects of FIs in NSCLC and act as a potential therapeutic adjuvant in ferroptosis-mediated therapy.

4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047007

RESUMO

A series of 4-anilinoquinolinylchalcone derivatives were synthesized and evaluated for antiproliferative activities against the growth of human cancer cell lines (Huh-7 and MDA-MB-231) and normal lung cells (MRC-5). The results exhibited low cytotoxicity against human lung cells (MRC-5). Among them, (E)-3-{4-{[4-(benzyloxy)phenyl]amino}quinolin-2-yl}-1-(4-methoxyphenyl) prop-2-en-1-one (4a) was found to have the highest cytotoxicity in breast cancer cells and low cytotoxicity in normal cells. Compound 4a causes ATP depletion and apoptosis of breast cancer MDA-MB-231 cells and triggers reactive oxygen species (ROS)-dependent caspase 3/7 activation. In conclusion, it is worth studying 4-anilinoquinolinylchalcone derivatives further as new potential anticancer agents for the treatment of human cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Espécies Reativas de Oxigênio/farmacologia , Neoplasias da Mama/metabolismo , Antineoplásicos/uso terapêutico , Apoptose , Relação Estrutura-Atividade , Estrutura Molecular
5.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986766

RESUMO

Excessive exposure to ultraviolet radiation (UV) can induce oxidative stress through the over-production of reactive oxygen species (ROS) on the skin. Myricetin (MYR), a natural flavonoid compound, significantly inhibited UV-induced keratinocyte damage; however, its bioavailability is limited by its poor water solubility and inefficient skin penetration ability, which subsequently influences its biological activity. The purpose of the study was to develop a myricetin nanofibers (MyNF) system of hydroxypropyl-ß-cyclodextrin (HPBCD)/polyvinylpyrrolidone K120 (PVP)-loaded with MYR that would enhance the water solubility and skin penetration by changing the physicochemical characteristics of MYR, including reducing the particle size, increasing the specific surface area, and amorphous transformation. The results also revealed that the MyNF can reduce cytotoxicity in HaCaT keratinocytes when compared with MYR; additionally, MyNF had better antioxidant and photoprotective activity than raw MYR for the UVB-induced HaCaT keratinocytes damage model due to the MyNF increased water solubility and permeability. In conclusion, our results demonstrate that MyNF is a safe, photostable, and thermostable topical ingredient of antioxidant nanofibers to enhance the skin penetration of MYR and prevent UVB-induced skin damage.

6.
Biology (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829535

RESUMO

We assessed the microbial and chemical qualities and microbiomes of 14 mustard pickle products coded sequentially from A to N and sold in traditional Taiwanese markets. The results showed that the aerobic plate count and lactic acid bacteria count of commercially available mustard pickle products were 2.18-4.01 and <1.0-3.77 log CFU/g, respectively. Moreover, no coliform bacteria, Escherichia coli, Staphylococcus aureus, Salmonella spp., or Listeria monocytogenes were detected in any of the samples. Analysis of the chemical quality showed that the sulfite content of all samples exceeded 30 ppm, which is the food additive limit in Taiwan. Furthermore, the mean contents of eight biogenic amines in the mustard pickle product samples were below 48.0 mg/kg. The results of high-throughput sequencing showed that the dominant bacterial genera in sample A were Proteus spp. (25%), Vibrio (25%), and Psychrobacter (10%), in sample C they were Weissella (62%) and Lactobacillus (15%), in sample E it was Lactobacillus (97%), and in sample J it was Companilactobacillus (57%). Mustard pickle product samples from different sources contained different microbiomes. The dominant bacterial family was Lactobacillaceae in all samples except for sample A. In contrast, the microbiome of sample A mainly consisted of Morganellaceae and Vibrionaceae, which may have resulted from environmental contamination during storage and sales. The result of this work suggests it may be necessary to monitor sulfite levels and potential sources of bacterial contamination in mustard pickle products, and to take appropriate measures to rule out any public health risks.

7.
Antioxidants (Basel) ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421490

RESUMO

Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution activity of Artocarpus altilis extract (AAM) has not been investigated yet. The present study demonstrated that 5 µg/mL of AAM was considered to be a safe dose for further experiments without cytotoxicity. Next, we evaluated the anti-pollution activity of AAM through the PM-induced keratinocytes damage cell model. The results showed that AAM could reduce PM-induced overproduction of intracellular ROS and the final product of lipid peroxidation, 4-hydroxynonenal (4HNE). In addition, AAM not only reduced the inflammatory protein expressions, including tumor necrosis factor α (TNFα), TNF receptor 1 (TNFR1) and cyclooxygenase-2 (COX-2), but also balanced the aging protein ratio of matrix metalloproteinase (MMPs) and tissue inhibitors of metalloproteases (TIMPs) through downregulating the phosphorylation of mitogen-activated protein kinase (MAPK) signaling. For skin barrier protection, AAM could repair PM-induced barrier function proteins damage, including filaggrin, loricrin and aquaporin 3 for providing anti-aging bioactivity. In conclusion, AAM has the potential to be developed as an anti-pollution active ingredient for topical skin products to prevent skin oxidation, inflammation and aging, and restore the skin barrier function.

8.
Biology (Basel) ; 11(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36138786

RESUMO

The purpose of the study is to investigate the effects of brine salting and high-pressure processing (HPP) on the microbial inactivation and quality parameters of mackerel fillets. Mackerel fillets were immersed in 3% and 9% sodium chloride brine for 90 min at refrigerator temperature, and then treated at 300, 400, 500, and 600 MPa pressure for 5 min. The microbial counts and physicochemical qualities of the fish were examined. In comparison with fish fillets treated with brine or high pressure alone, those treated with the combination of brine salting and HPP showed significantly reduced aerobic plate count (APC) and psychrotrophic bacteria count (PBC). The hardness and chewiness of salt-brined fillets were obviously lower than those of the unsalted fillets under the same pressure condition. Thus, brine salting imparted mackerel fillets a softer texture, which compensated for the HPP-induced increased hardness and chewiness of the fillets. The L* (lightness) and ΔE (colour difference) values of the fillets increased with increasing pressure, with or without brine salting. Conversely, a* (redness) values decreased with increasing pressure. The samples treated with 3% brine in combination with 300 or 400 MPa pressure had a* values similar to those of the samples processed under similar HPP conditions alone but showed lower ΔE values than the other groups. Therefore, as a very high pressure would adversely affect the texture and colour of the fish fillets, this study suggests that immersion in an appropriate brine concentration (3%) and treatment with HPP at 400 MPa for 5 min improved or maintained the colour and texture relatively well and produced a synergistic bactericidal effect.

9.
Biology (Basel) ; 11(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625430

RESUMO

In the research, we evaluated the effects of high-pressure processing (HPP) on the growth and histamine formation of histamine-forming bacteria (HFB) in yellowfin tuna meat during storage. Tuna meat samples inoculated with the individual HFB species Morganella morganii and Photobacterium phosphoreum were subjected to HPP treatment at 250, 350, 450, and 550 MPa for 5 min, and the changes in bacterial count, total volatile basic nitrogen (TVBN) content, pH, and histamine content during storage at 4 and 15 °C were analyzed. The results indicate that the bacterial counts of the HFB species decreased significantly with increasing pressure, and HFB became undetectable in the samples treated at 450 and 550 MPa. At a storage temperature of 15 °C, the bacterial counts of both HFB species in the control group and samples subjected to HPP treatment at 250 and 350 MPa increased significantly with storage time. The bacterial counts of M. morganii in the samples stored at 4 °C decreased, whereas those of P. phosphoreum increased gradually owing to its psychrophilic nature. HPP treatment (>250 MPa) inhibited the increases in pH and TVBN content of the samples stored at 15 °C and delayed histamine formation in the samples during storage; these effects were more significant as the pressure during HPP treatment was increased.

10.
Int J Pharm ; 617: 121629, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245633

RESUMO

This study was conducted to appraise the possible potential of synthetic isoflavones (SIFs) on psoriasis treatment. A practical and easy-to-operate approach was employed in synthesizing a series of SIFs, considering that acquiring flavonoids from natural resources is usually expensive, time-consuming, and non-eco-friendly. Seven SIFs derived from daidzein were produced with differences in the location of the hydroxyl groups and degree of methoxylation. The in vitro and in vivo skin absorption of topically applied SIFs was estimated. Further, keratinocytes (HaCaT) were employed as the model to investigate the anti-inflammatory activity of the isoflavones. The lipophilicity was increased from SIF-1 to -7. Noteworthily, there was a parabolic relationship between lipophilicity and skin absorption, with SIF-5 (4',7-dihydroxyisoflavone, daidzein) and SIF-6 (7-hydroxy-3',4'-dimethoxyisoflavone, cladrin) demonstrating the highest retention in pig skin. The methoxylated isoflavone SIF-5 showed the greatest permeation into barrier-deficient skin among the compounds tested, with a 6- and 8-fold increase after lipid and protein removal. The cell-based study exhibited the capability of SIFs to restrain the overexpressed IL-6, IL-8, and CXCL1 in stimulated HaCaT. The therapeutic index (TI) predicted the potential candidates of SIF-5 and SIF-6 for topical application to treat psoriatic inflammation. The imiquimod (IMQ)-driven psoriasiform murine model manifested the inhibition of hyperplasia and immune cell infiltration by topically administered SIF-5 and SIF-6. The epidermal thickness of IMQ-treated skin was decreased from 172 to 40 µm by both isoflavones. This effect was comparable with that of betamethasone, the positive control. The topical treatment of SIF-6 significantly reduced cytokine/chemokine upregulation by IMQ. The methoxylated isoflavone with dramatic anti-inflammatory activity is promising for the development of an antipsoriatic agent.


Assuntos
Isoflavonas , Psoríase , Animais , Modelos Animais de Doenças , Imiquimode/farmacologia , Isoflavonas/farmacologia , Queratinócitos , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/patologia , Pele , Suínos
11.
Pharmacol Res ; 177: 106115, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124207

RESUMO

The bidirectional interaction between carcinogens and gut microbiota that contributes to colorectal cancer is complicated. Reactivation of carcinogen metabolites by microbial ß-glucuronidase (ßG) in the gut potentially plays an important role in colorectal carcinogenesis. We assessed the chemoprotective effects and associated changes in gut microbiota induced by pre-administration of bacterial-specific ßG inhibitor TCH-3511 in carcinogen azoxymethane (AOM)-treated APCMin/+ mice. AOM induced intestinal ßG activity, which was reflected in increases in the incidence, formation, and number of tumors in the intestine. Notably, inhibition of gut microbial ßG by TCH-3511 significantly reduced AOM-induced intestinal ßG activity, decreased the number of polyps in both the small and large intestine to a frequency that was similar in mice without AOM exposure. AOM also led to lower diversity and altered composition in the gut microbiota with a significant increase in mucin-degrading Akkermansia genus. Conversely, mice treated with TCH-3511 and AOM exhibited a more similar gut microbiota structure as mice without AOM administration. Importantly, TCH-3511 treatment significant decreased Akkermansia genus and produced a concomitant increase in short-chain fatty acid butyrate-producing gut commensal microbes Lachnoospiraceae NK4A136 group genus in AOM-treated mice. Taken together, our results reveal a key role of gut microbial ßG in promoting AOM-induced gut microbial dysbiosis and intestinal tumorigenesis, indicating the chemoprotective benefit of gut microbial ßG inhibition against carcinogens via maintaining the gut microbiota balance and preventing cancer-associated gut microbial dysbiosis. Thus, the bacterial-specific ßG inhibitor TCH-3511 is a potential chemoprevention agent for colorectal cancer.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Azoximetano/toxicidade , Bactérias , Carcinogênese , Carcinógenos/toxicidade , Transformação Celular Neoplásica , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/prevenção & controle , Disbiose/prevenção & controle , Glucuronidase , Camundongos
12.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34679686

RESUMO

Particulate matter (PM) is the main indicator of air pollutants, and it may increase the level of reactive oxygen species (ROS) in keratinocytes, leading to skin inflammation, aging, and decreased moisturizing ability. Pterostilbene (PTS) is a dimethylated analog of resveratrol that has antioxidant effects. However, the molecular mechanisms of PTS in preventing PM-induced keratinocyte inflammation and aging have not been investigated yet. Therefore, we used PM-induced human keratinocytes to investigate the protective mechanisms of PTS. The results showed that 20 µM PTS had no toxicity to HaCaT keratinocytes and significantly reduced PM-induced intracellular ROS production. In addition, nuclear translocation of the aryl hydrocarbon receptor (AHR) was inhibited by PTS, leading to reduced expression of its downstream CYP1A1. PTS further inhibited PM-induced MAPKs, inflammation (COX-2), and aging (MMP-9) protein cascades, and rescued moisturizing (AQP-3) protein expression. We analyzed the PTS content in cells at different time points and compared the concentration required for PTS to inhibit the target proteins. Finally, we used the skin penetration assay to show that the PTS essence mainly exists in the epidermal layer and did not enter the system circulation. In conclusion, PTS could protect HaCaT keratinocytes from PM-induced damage and has the potential to become a cosmetic ingredient.

13.
Pharmaceutics ; 13(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575454

RESUMO

Antioxidants from plant extracts are often used as additives in skincare products to prevent skin problems induced by environmental pollutants. Artocarpus communis methanol extract (ACM) has many biological effects, such as antioxidant, anti-inflammatory, wound healing, and photoprotective effects; however, the poor water solubility of raw ACM has limited its applications in medicine and cosmetics. Topical antioxidant nanoparticles are one of the drug-delivery systems for overcoming the poor water solubility of antioxidants for increasing their skin penetration. The present study demonstrated that ACM-loaded hydroxypropyl-ß-cyclodextrin and polyvinylpyrrolidone K30 nanoparticles (AHP) were successfully prepared and could effectively increase the skin penetration of ACM through changing the physicochemical characteristics of raw ACM, including reducing the particle size, increasing the surface area, and inducing amorphous transformation. Our results also revealed that AHP had significantly better antioxidant activity than raw ACM for preventing photocytotoxicity because the AHP formulation increased the cellular uptake of the ACM in UVB-irradiated HaCaT keratinocytes. In conclusion, our results suggest that AHP may be used as a good topical antioxidant nanoparticle for delivering ACM into deep layers of the skin for preventing UVB-induced skin problems.

14.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443427

RESUMO

Pterostilbene, a natural metabolite of resveratrol, has been indicated as a potent anticancer molecule. Recently, several pterostilbene derivatives have been reported to exhibit better anticancer activities than that of the parent pterostilbene molecule. In the present study, a series of pterostilbene derivatives were designed and synthesized by the hybridization of pterostilbene, chalcone, and cinnamic acid. The cytotoxic effect of these hybrid molecules was determined using two oral cancer cell lines, HSC-3 and OECM-1. (E)-3-(2-((E)-4-Hydroxystyryl)-4,6-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (4d), with IC50 of 16.38 and 18.06 µM against OECM-1 and HSC-3, respectively, was selected for further anticancer mechanism studies. Results indicated that compound 4d effectively inhibited cell proliferation and induced G2/M cell cycle arrest via modulating p21, cyclin B1, and cyclin A2. Compound 4d ultimately induced cell apoptosis by reducing the expression of Bcl-2 and surviving. In addition, cleavage of PARP and caspase-3 were enhanced following the treatment of compound 4d with increased dose. To conclude, a number of pterostilbene derivatives were discovered to possess potent anticancer potentials. Among them, compound 4d was the most active, more active than the parent pterostilbene.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Estilbenos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Poli(ADP-Ribose) Polimerases/metabolismo , Estilbenos/química , Relação Estrutura-Atividade
15.
J Med Chem ; 64(13): 8992-9009, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34132534

RESUMO

Glycine-N-methyl transferase (GNMT) downregulation results in spontaneous hepatocellular carcinoma (HCC). Overexpression of GNMT inhibits the proliferation of liver cancer cell lines and prevents carcinogen-induced HCC, suggesting that GNMT induction is a potential approach for anti-HCC therapy. Herein, we used Huh7 GNMT promoter-driven screening to identify a GNMT inducer. Compound K78 was identified and validated for its induction of GNMT and inhibition of Huh7 cell growth. Subsequently, we employed structure-activity relationship analysis and found a potent GNMT inducer, K117. K117 inhibited Huh7 cell growth in vitro and xenograft in vivo. Oral administration of a dosage of K117 at 10 mpk (milligrams per kilogram) can inhibit Huh7 xenograft in a manner equivalent to the effect of sorafenib at a dosage of 25 mpk. A mechanistic study revealed that K117 is an MYC inhibitor. Ectopic expression of MYC using CMV promoter blocked K117-mediated MYC inhibition and GNMT induction. Overall, K117 is a potential lead compound for HCC- and MYC-dependent cancers.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Glicina N-Metiltransferase/genética , Ensaios de Triagem em Larga Escala , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Glicina N-Metiltransferase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Front Microbiol ; 11: 2053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983038

RESUMO

Candida albicans is the most common cause of fungal infection. The emergence of drug resistance leads to the need for novel antifungal agents. We aimed to design naphthofuranquinone analogs to treat drug-resistant C. albicans for topical application on cutaneous candidiasis. The time-killing response, agar diffusion, and live/dead assay of the antifungal activity were estimated against 5-fluorocytosine (5-FC)- or fluconazole-resistant strains. A total of 14 naphthofuranquinones were compared for their antifungal potency. The lead compounds with hydroxyimino (TCH-1140) or O-acetyl oxime (TCH-1142) moieties were the most active agents identified, showing a minimum inhibitory concentration (MIC) of 1.5 and 1.2 µM, respectively. Both compounds were superior to 5-FC and fluconazole for killing planktonic fungi. Naphthofuranquinones efficiently diminished the microbes inside and outside the biofilm. TCH-1140 and TCH-1142 were delivered into C. albicans-infected keratinocytes to eradicate intracellular fungi. The compounds did not reduce the C. albicans burden inside the macrophages, but the naphthofuranquinones promoted the transition of fungi from the virulent hypha form to the yeast form. In the in vivo skin mycosis mouse model, topically applied 5-FC and TCH-1140 reduced the C. albicans load from 1.5 × 106 to 5.4 × 105 and 1.4 × 105 CFU, respectively. The infected abscess diameter was significantly decreased by TCH-1140 (3-4 mm) as compared to the control (8 mm). The disintegrated skin-barrier function induced by the fungi was recovered to the baseline by the compound. The data support the potential of TCH-1140 as a topical agent for treating drug-resistant C. albicans infection without causing skin irritation.

17.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650607

RESUMO

Activation of nuclear factor erythroid-2-related factor 2 (NRF2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent NRF2 activator and cancer chemopreventive agent. In this study, we have synthesized a series of 4-anilinoquinolinylchalcone derivatives, and used a NRF2 promoter-driven firefly luciferase reporter stable cell line, the HaCaT/ARE cells, to screen a panel of these compounds. Among them, (E)-3-{4-[(4-acetylphenyl)amino]quinolin-2-yl}-1-(4-fluorophenyl)prop-2-en-1-one (13b) significantly increased NRF2 activity in the HaCaT cell with a half maximal effective concentration (EC50) value of 1.95 µM. Treatment of compound 13b upregulated HaCaT cell NRF2 expression at the protein level. Moreover, the mRNA level of NRF2 target genes, heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glucose-6-phosphate dehydrogenase (G6PD) were significantly increased in HaCaT cells upon the compound 13b treatment. The molecular docking results exhibited that the small molecule 13b is well accommodated by the bound region of Kelch-like ECH-associated protein 1 (Keap1)-Kelch and NRF2 through stable hydrogen bonds and hydrophobic interaction, which contributed to the enhancement of affinity and stability between the ligand and receptor. Compound 13b has been identified as the lead compound for further structural optimization.


Assuntos
Chalconas , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch , Queratinócitos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/biossíntese , Linhagem Celular Transformada , Chalconas/síntese química , Chalconas/química , Chalconas/farmacologia , Glucosefosfato Desidrogenase , Glutamato-Cisteína Ligase/biossíntese , Heme Oxigenase-1/biossíntese , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Queratinócitos/química , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética
18.
J Dermatol Sci ; 99(2): 90-99, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32622642

RESUMO

BACKGROUND: Thalidomide can be a TNF-α inhibitor for treating skin inflammation. This drug exhibits a strong toxicity that limits its application. OBJECTIVE: We synthesized a thalidomide analog containing the benzyl chloride group (2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione, CDI) to examine anti-inflammatory activity against psoriasis. METHODS: The evaluation was conducted by the experimental platforms of in vitro TNF-α- or imiquimod (IMQ)-stimulated HaCaT cells and in vivo IMQ-induced psoriasiform plaque. RESULTS: Using the in vitro keratinocyte model, we demonstrated a greater inhibition of IL-1ß, IL-6, and IL-24 by CDI than by thalidomide. No significant cytotoxicity was observed at 100 µM. CDI delivered facilely into the skin with a cutaneous targeting ability 228-fold greater than thalidomide. CDI caused a negligible irritation on healthy mouse skin. We showed that topically applied CDI reduced IMQ-induced red scaly lesions, hyperplasia, microabscesses, and cytokine expression in the mouse model. The skin-barrier function measured by transepidermal water loss (TEWL) could be partially recovered from 50.6-36.3 g/m2/h by CDI. The mechanistic study showed that CDI suppressed cytokine production by inhibiting the phosphorylation of NF-κB and AP-1 via MAPK pathways. CONCLUSION: CDI would be beneficial for the development of a therapeutic agent against psoriasis.


Assuntos
Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Pele/efeitos dos fármacos , Talidomida/farmacologia , Administração Cutânea , Animais , Modelos Animais de Doenças , Células HaCaT , Humanos , Imiquimode/administração & dosagem , Imiquimode/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Psoríase/imunologia , Psoríase/patologia , Pele/imunologia , Pele/patologia , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Cancers (Basel) ; 12(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466291

RESUMO

Lung cancer is one of the deadliest cancers worldwide due to chemoresistance in patients with late-stage disease. Quinoline derivatives show biological activity against HIV, malaria, bacteriuria, and cancer. DFIQ is a novel synthetic quinoline derivative that induces cell death in both in vitro and in vivo zebrafish xenograft models. DFIQ induced cell death, including apoptosis, and the IC50 values were 4.16 and 2.31 µM at 24 and 48 h, respectively. DFIQ was also found to induce apoptotic protein cleavage and DNA damage, reduce cell cycle-associated protein expression, and disrupt reactive oxygen species (ROS) reduction, thus resulting in the accumulation of superoxide radicals. Autophagy is also a necessary process associated with chemotherapy-induced cell death. Lysosome accumulation and lysosome-associated membrane protein-2 (LAMP2) depletion were observed after DFIQ treatment, and cell death induction was restored upon treatment with the autophagy inhibitor 3-methyladenine (3-MA). Nevertheless, ROS production was found to be involved in DFIQ-induced autophagy activation and LAMP2 depletion. Our data provide the first evidence for developing DFIQ for clinical usage and show the regulatory mechanism by which DFIQ affects ROS, autophagy, and apoptosis.

20.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561542

RESUMO

We designed and synthesized a series of novel 3-arylquinoxaline derivatives and evaluated their biological activities as potential dengue virus (DENV) replication inhibitors. Among them, [3-(4-methoxyphenyl)quinoxalin-2-yl](phenyl)methanol (19a), [6,7-dichloro-3-(4-methoxyphenyl)quinoxalin-2-yl](phenyl)methanol (20a), and (4-methoxyphenyl)(3-phenylquinoxalin-2-yl)methanone (21b) were found to significantly inhibit the DENV RNA expression in Huh-7-DV-Fluc cells with a potency better than that of ribavirin. Compound 19a reduced DENV replication in both viral protein and messenger RNA (mRNA) levels in a dose-dependent manner and exhibited no significant cell cytotoxicity. Notably, compound 19a exhibited a half maximal effective concentration (EC50) value at 1.29 ± 0.74 µM. We further observed that the inhibitory effect of 19a on DENV replication was due to suppression of DENV-induced cyclooxygenase-2 (COX-2) expression. Docking studies also showed that 19a caused hydrophobic interactions at the active sites with Arg29, Glu31, Tyr116, Leu138, Pro139, Lys454, Arg455, and Gln529. The calculated lowest binding energy between the 19a and COX-2 was -9.10 kcal/mol. In conclusion, compound 19a might be a potential lead compound for developing an anti-DENV agent.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Quinoxalinas/farmacologia , Antivirais/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quinoxalinas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...